Linguistique de l’écrit

Revue internationale en libre accès

Revue | Volume | Article

234629

Quine's conjecture on many-sorted logic

Hans Halvorson

pp. 3563-3582

Résumé

Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical equivalence. Our clarification of Quine’s conjecture, however, exposes the shortcomings of his argument against many-sorted logic.

Détails de la publication

Publié dans:

Ruttkamp-Bloem Emma (2017) New thinking about scientific realism. Synthese 194 (9).

Pages: 3563-3582

DOI: 10.1007/s11229-016-1107-z

Citation complète:

Halvorson Hans, 2017, Quine's conjecture on many-sorted logic. Synthese 194 (9), New thinking about scientific realism, 3563-3582. https://doi.org/10.1007/s11229-016-1107-z.