Linguistique de l’écrit

Revue internationale en libre accès

Collections | Livre | Chapitre

224434

Semimodularity and the logic of quantum mechanics

James C. T. Pool

pp. 395-414

Résumé

If (, Y, P, Ω) is an event-state-operation structure, then the events form an orthomodular ortholattice (, ≦, ′) and the operations, mappings from the set of states Y into Y, form a Baer *-semigroup(S Ω, ∘, *, ′). Additional axioms are adopted which yield the existence of a homomorphism θ from (S Ω , ∘, *, ′) into the Baer *-semigroup (S(ℰ), ∘, *, ′) of residuated mappings of (, ≦, ′) such that x∈S Ω maps states while θx S(ℰ) maps supports of states. If (ℰ, ≦, ′) is atomic and there exists a correspondence between atoms and pure states, then the existence of θ provides the result: (, ≦, ′) is semimodular if and only if every operation xS Ω is a pure operation (maps pure states into pure states).

Détails de la publication

Publié dans:

Hooker Clifford A. (1975) The logico-algebraic approach to quantum mechanics I: historical evolution. Dordrecht, Springer.

Pages: 395-414

DOI: 10.1007/978-94-010-1795-4_22

Citation complète:

Pool James C. T., 1975, Semimodularity and the logic of quantum mechanics. In C. A. Hooker (ed.) The logico-algebraic approach to quantum mechanics I (395-414). Dordrecht, Springer.