Linguistique de l’écrit

Revue internationale en libre accès

Collections | Livre | Chapitre

205968

Types and tokens for logic with diagrams

Frithjof Dau

pp. 62-93

Résumé

It is well accepted that diagrams play a crucial role in human reasoning. But in mathematics, diagrams are most often only used for visualizations, but it is doubted that diagrams are rigor enough to play an essential role in a proof. This paper takes the opposite point of view: It is argued that rigor formal logic can carried out with diagrams. In order to do that, it is first analyzed which problems can occur in diagrammatic systems, and how a diagrammatic system has to be designed in order to get a rigor logic system. Particularly, it will turn out that a separation between diagrams as representations of structures and these structures themselves is needed, and the structures should be defined mathematically. The argumentation for this point of view will be embedded into a case study, namely the existential graphs of Peirce. In the second part of this paper, the theoretical considerations are practically carried out by providing mathematical definitions for the semantics and the calculus of existential Alpha graphs, and by proving mathematically that the calculus is sound and complete.

Détails de la publication

Publié dans:

Wolff Karl Erich, Pfeiffer Heather D., Delugach Harry (2004) Conceptual structures at work: 12th international conference on conceptual structures. Dordrecht, Springer.

Pages: 62-93

DOI: 10.1007/978-3-540-27769-9_5

Citation complète:

Dau Frithjof, 2004, Types and tokens for logic with diagrams. In K. Wolff, H. D. Pfeiffer & H. Delugach (eds.) Conceptual structures at work (62-93). Dordrecht, Springer.