Linguistique de l’écrit

Revue internationale en libre accès

Livre | Chapitre

190806

Weak implicational logics related to the Lambek calculus

Gentzen versus Hilbert formalisms

Wojciech Zielonka

pp. 201-212

Résumé

It has been proved by the author that the product-free Lambek calculus with the empty string in its associative (L 0) and non-associative (NL 0) variant is not finitely Gentzen-style axiomatizable if the only rule of inference is the cut rule. We give here rather detailed outlines of the proofs for both L 0 and NL 0. In the last section, Hilbert-style axiomatics for the corresponding weak implicational calculi are given.

Détails de la publication

Publié dans:

Makinson David, Malinowski Jacek, Wansing Heinrich (2009) Towards mathematical philosophy: papers from the Studia logica conference Trends in logic IV. Dordrecht, Springer.

Pages: 201-212

DOI: 10.1007/978-1-4020-9084-4_10

Citation complète:

Zielonka Wojciech, 2009, Weak implicational logics related to the Lambek calculus: Gentzen versus Hilbert formalisms. In D. Makinson, J. Malinowski & H. Wansing (eds.) Towards mathematical philosophy (201-212). Dordrecht, Springer.