Collections | Livre | Chapitre
Adaptive proofs for networks of partial structures
pp. 17-45
Résumé
The present paper expounds a preferred models semantics of paraconsistent reasoning. The basic idea of this semantics is that we interpret the language L(V) of a theory T in such a way that the axioms of T are satisfied to a maximal extent. These preferred interpretations are described in terms of a network of partial structures. Upon this semantic analysis of paraconsistent reasoning we develop a corresponding proof theory using adaptive logics.
Détails de la publication
Publié dans:
Andreas Holger, Verdée Peter (2016) Logical studies of paraconsistent reasoning in science and mathematics. Dordrecht, Springer.
Pages: 17-45
DOI: 10.1007/978-3-319-40220-8_2
Citation complète:
Andreas Holger, Verdée Peter, 2016, Adaptive proofs for networks of partial structures. In H. Andreas & P. Verdée (eds.) Logical studies of paraconsistent reasoning in science and mathematics (17-45). Dordrecht, Springer.